TECHNICAL DATA SHEET - COMPACT LAMINATES ## **TECHNICAL SPECIFICATIONS** ## **COMPACT LAMINATES** | | | | | 18.0mm | | 12.0mm | | 10.0mm | | 9.0mm | | 8.0mm | | 6.0mm | | 4.0mm | | |-----------|--|----------------------------------|--|---------------------------|--------------------------------|----------------------------------|--------------------------------|----------------------------------|--------------------------------|----------------------------------|--------------------------------|----------------------------------|--------------------------------|----------------------------------|--------------------------------|----------------------------------|--------------------------------| | S.
No. | Properties | Unit | Test method
as per EN
438 Part 2 &
4:2016 | Specified
values | Typical
Results
Greenlam | 1 | Classification | | EN 438-4-4 | | | | | | | ompact Gener | al purpose sta | ndard, CGS | | | | | | | | | | | | . " | | | ONAL PROPERT | - | | | | | | | | | | 2 | Thickness | mm | EN 438-2 - 5 | | Complies | 12.0 ± 0.50 | Complies | 10.0 ± 0.50 | Complies | 9.0 ± 0.50 | Complies | 8.0 ± 0.50 | Complies | 6.0 ± 0.40 | Complies | 4.0 ± 0.30 | Complies | | 3
4 | Length & width Density | mm
g/cm3 | EN 438-2 - 6
EN ISO 1183
-1:2004 | +10mm/ -Nil
1.35 (min) | Complies
1.4 | +10mm/ -Nil
1.35 | Complies
1.39 | +10mm/ -Nil
1.35 | Complies
1.39 | | 5 | Dimensional Stability at Elevated Temperature
Longitudinal Direction | | EN 438-2 -17 | 0.30 (max) | 0.06 | 0.30 (max) | 0.08 | 0.30 (max) | 0.1 | 0.30 (max) | 0.11 | 0.30 (max) | 0.12 | 0.30 (max) | 0.16 | 0.40 (max) | 0.28 | | | Transverse Direction | in % | | 0.60 (max) | 0.14 | 0.60 (max) | 0.15 | 0.60 (max) | 0.19 | 0.60 (max) | 0.21 | 0.60 (max) | 0.25 | 0.60 (max) | 0.29 | 0.80 (max) | 0.38 | | | | | | | | | MECHANI | CAL PROPERTIE | S | | | | | | | | | | 6 | Resistance to Immersion in Boiling
Water (2 hours) | | EN 438-2 -12 | | | | | | | | | | | | | | | | | Mass Increas | se % | | 2.0 (max) | 0.2 | 2.0 (max) | 0.24 | 2.0 (max) | 0.29 | 2.0 (max) | 0.31 | 2.0 (max) | 0.39 | 2.0 (max) | 0.64 | 2.0 (max) | 0.94 | | | Thickness Increas | | | 2.0 (max) | 0.6 | 2.0 (max) | 0.68 | 2.0 (max) | 0.78 | 2.0 (max) | 0.84 | 2.0 (max) | 0.95 | 2.0 (max) | 1.12 | 2.0 (max) | 1.48 | | 7 | Appearance Resistance to Impact by Large Diameter Ball | ce Rating | | Not worse
than 4 | 5 | 1 | Drop Heigi | ht mm | EN 438-2 -21 | 1800 | 1900 | 1800 | 1900 | 1800 | 1900 | 1800 | 1900 | 1800 | 1900 | 1800 | 1900 | 1400 | 1500 | | | Diameter of Indentation | in mm | | 10 (max) | 7 | 10 (max) | 7 | 10 (max) | 8 | 10 (max) | 7 | | 8 | Flexural Modulus | Mpa E | EN ISO 178; 200 | | Complies | 0000 (:-) | Complies | 0000 (min) | Complies | 0000 (min) | Complies | 0000 (:-) | Complies | 0000 (min) | Complies | 0000 (min) | Complies | | 9 | Floreiral Strongth | Mno | | 9000 (min) | Complies | 10 | Flexural Strength Resistance to Crazing | Mpa | EN 438-2 -24 | 80 (min)
Not worse | Complies
5 | 80 (min) | Complies
5 | 80 (min)
Not worse | Complies
5 | 80 (min)
Not worse | Complies
5 | 80 (min)
Not worse | Complies
5 | 80 (min) | Complies
5 | 80 (min)
Not worse | Complies
5 | | IU | Resistance to Crazing | Rating | EN 438-2 -24 | than 4 | a | Not worse
than 4 | J | than 4 | J | than 4 | J | than 4 | J | Not worse
than 4 | J | than 4 | | | | | | | | | | | E PROPERTIES | | | | | | | | | | | 11 | Resistance to Water Vapor | Rating | EN 438-2 -14 | Not worse
than 4 | 5 | 12 | Resistance to Dry Heat at 160° C Resistance to Wet heat @100° C | Rating
Rating | EN 438-2 -16
EN 438-2 -18 | than 4 | 5 | Not worse
than 4
Not worse | 5 | | 14 | Resistance to Surface Wear, IP | Rev. | EN 438-2 -10 | than 4 | Complies | 15 | Resistance to Scratching | N | EN 438-2 -25 | 2.0 (min) | 2.5 (min) | | • | Rating | EN 438-2 -25 | , , | 5 | Not worse
than 4 | 5 | | 16 | Resistance to staining Group 1 & | | EN 438-2 -26 | 5
4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5
4 | 5 | 5
4 | 5 | 5 | 5 | | 17 | Group Light fastness (Xenon Arc Lamp)- Grey Scale Contrast | Rating | EN 438-2 -27 | 4
4 to 5 | ≥ 4 Complies | | urcy ocure contract | nuting | LN 450 Z ZI | 7100 | complica | 710 3 | • | ERFORMANCE | Complica | 7103 | complica | 7103 | complica | 710 0 | Compiles | 7100 | compiles | | 18 | Reaction to Fire | EN 13501-1 | Euroclass | D-s2, d0 | Complies | C-s2, d0 | Complies | C-s2, d0 | Complies | D-s2, d0 | Complies | | 1 | Calorific Value | ISO 1716: 2010 | | 19.91 (max) | 19.88 | | | | | | | HEAL | TH & ENVIRONI | MENTAL CHARA | CTERISTICS | | | | | | | | | | 20 | Food safe | EN 13130-1 | - | - | YES | 21 | Contents' migration as per
Food Commission Regulation | EN 1186-1,
3 & 14: 2002 | Migration | | | | | Migratio | on of Simulan | its is less than | maximum pe | rmitted by Reg | gulation | | | | | | 22 | Formaldehyde emission (release) | EN 16516-2017 | • | 0.1 | 0.02 | 0.1 | 0.02 | 0.1 | 0.02 | 0.1 | 0.02 | 0.1 | 0.02 | 0.1 | 0.02 | 0.1 | 0.02 | | 23 | | ISO 16000-9
in UL 2818 - 2013 | | - | A | - | A | - | A | -
Greeng | A
Jard Gold | • | A | - | А | - | A | | 24 | AntiViral Efficacy Reduction
% Reduction in 24 hou
Activity after 24 hou | | 9
%
Log
Reduction | 95% (min)
2.0 (min) | 99.9% (min)
Exceeds | 95% (min)
2.0 (min) | 99.9% (min
Exceed | | 25 | Anti-bacterial Efficacy & activity
% Reduction in 24 hou
Activity after 24 hou | | %
Log
Reduction | 95.0 (min)
2.0 (min) | 99.99
Exceeds | 26 | Anti-Fungus Efficacy
Growth after 28 day | ASTM G-21-201
/s | 5
Class | 1 | 0 (No
Growth) Fire test performance will depend on laminate & compact thickness and construction, substrate type and thickness, and adhesive used. It is advised to contact the laminate manufacturer for details of test reports and certifications held. Greenlam can supply type S and F HPLs. Class (Rating) – 1= Surface damage, 2= Severe appearance alteration, 3= Moderate change, 4= Slight change visible at certain angle, 5= No change Virus tested - MS2 Bacteriophage Bacteria tested – Pseudomonas. 2. Entrococcus Faecalis, 3. Candida Albicans 4. Pseudonomas Aeruginosa 5. Escherichia Coli 6. Klebsiella 7. MRSA (Methicilllin Resistant Stapphylococcus Aureus) 8. Salmonella Enterica Fungus tested: 1. Aspergillus niger 2. Penicillum funicollosum 3. Gliocladium virens 4. Chaetobium globosum 5. Aurobasidium pullulans Surface Finish: Ultra Matt • Robust, resistant to dirt, Anti finger Marks, caressing silky feel. • Size available : 1300 x 3050 mm i.e. 4.25' x 10' • Thickness offering : 0.7 mm – 24 mm. Note: Whereas Greenlam products are manufactured thoroughly to standards, the nature of the application procedure is beyond our control. The values given above are to the best of knowledge but without liability/warranty, expressed or implied. I Greenlam AFX Compact Laminates can be made available in Fire Retardant variants also. ## **GLOBAL HEADQUARTERS** 2nd Floor, West Wing, Worldmark 1, Aerocity, IGI Airport Hospitality District, New Delhi - 110 037. T:+91-11- 42791399 E: info@greenlam.com, W : www.greemlam.com